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ABSTRACT

A new nonlinear Sy transport differencing scheme
for slab geometry is presented that is fourth order
accurate for small meshes and is saictly positive. The
new scheme has been coded into the existing ONELD
code and tested. We present numcrical results to
demonstrate the accuracy and positivity of this new
scheme.

I. INTRODUCTION

Since the inception of the discrete ordinates (Sp)
angular treatment of the transport equation, code
developers have tried to develop accurate and positive
spatial differencing schemes to solve the S, equations.
One of the first differencing scheme used was the simple
step or constant discontinuous method!. The scheme is
strictly positive but only first order accurate in terms of
spatial errors, and thersfore; deemed too inaccurate for
peactical use. The diamond difference method! (DD) has
been used for many years because it is second order
accurate for small meshes. However, the DD method
can result in negative fluxes in one dimensional
problems for meshes thicker than two mean-free-paths,
and in two- and three¢-dimensional geometries, negative
fluxes can occur for any mesh size. To correct this
problem with DD, set-to-zero, step, and weighted
diamond "fixups" have been applied when negative
fluxes are observed. These are ad hoc remedies which

adversely affect accuracy and interact poorly with linear

Even the more recently developed numerical
schemes such as Linear DiscontinuousZ (LD), Lumped
Linear Discontinuous3 (LLD), Linear* and Bilinear?
Nodal (LN and BN), and Lincar Moments® (I M)
methods are not strictly positive even though all except
LLD are third order accurate or better for small meshes.
These methods do not require "fixup" because any
negative angular flux values are spatially damped and do
not propagate as they can in tbe DD method. As a
result, these modern schemes interact well with linear
diffusion synthetic acceleration (DSA) techniques.

In this paper a new nonlinear scheme is outlined
which is fourtb_order accurate for small meshes and is
strictly positive. The scheme has been implemented,
for the one dimensional slab geometry, into the ONELD
code and iested on a variety of problems. The method is
not limited to one dimensional geometries and work
continues on multi-dimensional ‘mplementation.

The remainder of this paper will proceed as follows:
in Sec.(II) we derive our new nonlinear Sp method, in
Sec.(III) we give numerical results to demonstrate the
accuracy and positivity of our new scheme, and in
Sec.(IV) we give some conclusions and discuss our
plans for future work.



II. THE NEW NONLINEAR METHOD

Using standard notation, the slab geomeu, S
equations are given by

a

™ Vo (X)+ 0, (X)W 5 (x) =Sx(x) , §))

Hm

with appropriate boundary conditions. Here Sy (x) is
the neutron source in direction m and can include
scattering, an inhomogeneous source, or fission.

Tc spatially discretize Eq.(1) we use the spatial
mesh given in Figure 1. Here we have divided the slab
into J cells, each baving width Ax; =X, /3 = Xj_1;2
and center X, =(X;,1/3 +X;-y/2)/2. Within each cell
we require the material properties to be constant,
allowing interior material boundaries, if any, to exist
only on the cell edges. That is, in the j-th cell we
define the total macroscopic cross section 6,(x) =0 ;.
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Figure 1. Slab Geometry Spatial Mesh

We will now consider the j-th cell over the interval
Xj-1/2 10 Xj4 ;2. The solution within the j-th cell to
Eq.(1) for pu, >0 is:

Vin(X)=W¥n(Xpi/ oo b
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Clearly the solution of the average flux, the outflow at
Xjs1/2, Of any angular flux within the cell is strictly
positive if Sp(x) is strictly positive, We will now
construct a representation of 8,(x) that preserves the

first two spatial momenis of S,(x) and is strictly
positive.

In the one-dimensional LM method the source in
the J-th cell is expanded in Legendre moments as

Sm(x)=Sp; Po(x)+-s—"ip,(x) , 3
Sm.j

where, Py(x)=1 and P(x)=2(x-x;)/Ax; are the
zeroth and first order Legendre polynomials , Sy, ; is the
average source and S; ; is the source slope. The
representation for S (x) can be negative if
IS;,',-| >Sp,;- To develop a representation that is strictly
positive, we first define a normalized source distribution
Sm(x) sothat Sp(x)=sy(x) S, ;. This is given by:

Sm(X) =[50 +5,P(0)] . )

Here s, =1 and s, =S}, ; /S, ; are the zeroth and first
Legendre moments of the source.

We will now construct a strictly positive
distribution, §(x), that has the same Legendre
moments as the original distribution s,(x). The
information theory7 prescription for choosing such a
distribution is to choose one that maximizes the entropy
within the j-th cell, H,(x), given only the incomplete
information that the first two moments provide. Here
Hp,(x) is given by
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The two moment constraints are:

of (x) =5, -
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We use the Lagrange multipliers, A, ;, at the extremum
given by

—H,,,( ’*zﬁ"deGK ®=0. @

Next, substituting Eq.(6) into Eq.(5) and Eq.(7) and
taking tbe variation and substituting the result into
Eq.(8), we find

i(x) =gl 9)
The Lagrange multipliers are determined by

substituting Eq.(9) into the two moments constraints
given by Eq.(7). These are:

1= e*or‘(im_h(_l‘-_i)] , (10)
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We can eliminate A, ; in Eq.(9) using Eq.(10) to obtain:

A
i, )-|,P|(l)
8(x)= _}—-nh(l,,) . (12

Substituting S,(x) =3§,,(x)Sy, ; into Eq.(2) and
integrating over the j-th cell, we obtain for u,, >0

-t
Vist/2 = W18
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Here we have defined w(xj, )=V, and
Em.j = OMij /um.

Similar steps are taken to find the representation for the
discrete angular fluxes when p, <0.

II. NUMERICAL RESULTS

In this section we provide numerical results for two
test problems. For each problem, we compare the new
pon-linear (NL) method with the linear momen:s (LM),
linear-discontinuous (LD), and diamond difference (DD)
with set-to-zero negative flux fixup. The LM and LD
schemes do not have fixup routines for negative fluxes
and the non-linear scheme is positive-definite. The DD
calculations were performed using the ONEDANT code
and the NL, LM and LD calculations were performed
using the ONELD code. The ONELD code is a variant
of ONEDANT that is used for charged particle and
neutron transport. ONELD uses the LD scheme in place
of the DD scheme used in ONEDANT,

The first test problem is an infinite slab iron-water
shield problem and is shown in Figure 2. We use the
S16 Gauss Legendre quadrature set, three group cross-
sections and Pj scattering. All calculations were

converged to a relative error of 104,

The results for the first test problem are given in
Table 1. Here we give, for each diffecencing scheme,
the neutron leakage from the right side of the slab. The
90 cm water region is 295 mean-free-paths thick in the
third neutron group. For coarsest mesk refinement each
mesh in this region is 74 mean-free-paths in width. The
LN method is seen to be accurate and strictly positive
for all mesh refinements. Both the LM and LD methods
are accurate and positive for all but the coarsest meshes.
The DD method pertorms poorest of all the methods
examined and does not even converge at the coarsest
mesh. Note that the NL solution monotonically
converges from above as the mesh size is reduced.

The second test problem, which is even more
difficult than the first, is shown in Figure 3. This
problem has 11 material zones of various widths, We
use the S16 quadrature set, the BUCLE-80 47 neutron

and 20 gamma-ray group crcss sections8 with P3



scattering. All calculations were converged to a relative
eror of 104

The results for the second test problem are given in
Tables 2 and 3. In Table 2 we give, for each
differencing scheme, the neutron leakage from the right
side of the slab. In Table 3 we give, for each
differencing scheme, the gamma-ray leakage from the
right side of the slab. We see that the new NL method
is very accurate and positive even for extremely coarse
mesh’ng. This is remarkable since the integrated
neutron flux in this test problem drops by some twenty
four crders of magnitude from the refiective boundary to
the vacuum boundary! Both the LM and the LD
methods are much better behaved and more accurate than
the DD method with LM being more accurate than LD
at every mesh. With the exception of the NL method,
none of these methods are strictly positive for coarse
meshing.

IV. CONCLUSIONS AND PLANS FOR FUTURE
WORK

The resuhs of the previous section demonstrate that
the new NL method is strictly positive and in the limit
of small mesh behaves like the LM method which is
fourth order. The real power of the method however,
will be in its application to two-, and threc- dimensional
problems. In multidimensional problems memory and
time limitations restrict the degi2~ of mesh refinement
obtainable. This is not the case in simple one -
dimensionl problems.

We plan to use the method of characteristics to
solve the transport equation in two- and three-
dimenstions. In two- and three- dimensions not only the
source represemtation, but also the angular flux
representations on the cell faces must be strictly
positive. The method of Section II can be used to
construct a strictly positive source from the average
source and the source moments in two- and three-
dimensions. The same technique can be used to
construct angular flux representations on the faces using

averages values and moments of the angular flux. We
are currently working on this extension.

We have recently determined that this new NL
methcd has the diffusion limit; and hence, can be
applied to optically thick, highly scattering problems.
The ONELD code which was modified to incorporate the
NL scheme uses an Sj iteiation accelerator which was
constructed for use with the LD method -ot the NL
method. We are developing a more efficient and
consistent diffusion acceleration: scheme for use with the
NL method.

ACKNOWLEDGMENTS

The authors would like to thank D. Kent Parsons
for providing the second test problem, Jim Morel for his
help and encouragement, and Marvin Adams for bis
insight and conversations concerning the diffusion limit
analysis This work was performed under the auspices
of the U.S. Department of Energy.

REFERENCES

1. B.G. Carlson and K.D. Lathrop, Computing
Methods in Reactor Physics, Chapter 3: "Transport
Theory: the Method of Discrete Ordinates”, Gordon and
Berach, New York (1968)

2. T.R. Hill, "ONETRAN: A Discrete Ordinates Finite
Element Code for the Solution of the One-Dimensional
Multigroup Transport Equation”, Report LA-5990
(1975).

3. E.W. Larsen and J.E. Morel, "Asymptotic Solutions
of Numerical Transport Problems in Optically Thick,
Diffusive Regimes II", J. Comp. Phyy., 83, 212 (1989).

4. W.F. Walters, " Augmented Weighted Diamond
Form of the Linear-Nodal Scheme for Cartesian
Coordina.e Systems", Nucl. Sci. Erg., 92, 192 (1986).



5. Y.Y. Azmy, "Comparison of Three Approximations
to the Linear-Linear Nodal Transport Method in
Weighted Diamond Difference Form", Nucl. Sci. Eng.,
100, 190 (1988).

6. R. Vaidyanathan, "A Finite Moments Algorithm for
Particle Transport Problems”, Nucl. Sci. Eng., 71, 46
(1979).

7. E.T. Jaynes, "Information Theory and Statistical
Mechanics”, Phys. Rev., 106, 620, (1957).

8. R.W. Roussin, "BUGLE-80 Coupled 47-Neutron,
20 Gamma-Ray P3 Cross-Section Library,” DLC-75,
Radiation Shielding Information Center.



Uniform Source

7
v I,
4
& / &
-4 i
2 // E
B | wat Ir n/ w 2
er 0 ater
g "y .
g / 2
s / 2
] o
& >
7
%S co-Pri-5 cm— - 90 coy -
Figure 2. Geometry for Test Problem One.
Table 1: Neutron Leakages (s°1) for Test Problem One
Number of Cells New NL Method LM Method ONELD ONEDANT
1+1+4 6.177-7 -1.167-4 -6.191-4 aNC
2+2+8 5.052-7 2.991-7 5.484-8 5.776-11
4+4+16 4.297-7 3.909-7 3.431-7 2.994-6
4+8+32 4.055-7 3.972.7 3.900-7 4 291.7
4+8+64 3.992-7 3.978-7 3.968-7 3.714-7
8+ 16+ 128 3.979-7 3.97/-7 3.976-7 3.910-7
8 + 16 + 256 3.977-7 3.977-1 3.977-7 3.961-7

4Could not converge problem
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Figure 3. Geometry for Test Problem Two.
Table 2: Neutron Leakages (s°1) for Test Problem Two
Number of Cells | New NL Method LM Method ONELD ONEDANT
34 1.780 4.375 -501.9 2.090 x 104
51 2.571 -1.016 2.090 6.308
100 2.440 2.201 1.308 0.0375
198 2.396 2.372 2172 0.9090
394 2.390 2.388 2.358 1.881
788 2.390 2.390 2.386 2.252
1576 2,390 2.390 2.389 2.355
Table 3: Gamma-Ray Leakages (102 s°1) for Test Problem Two
Number of Cells New NL Method LM Method ONELD ONEDANT
34 5.569 4,482 -1.450 x 104 5.175 x 103
51 5.543 2.503 -14.04 2.747
100 5.486 5.196 3.484 0.2900
198 5413 5.336 5057 2.533
394 5.339 5.335 5.294 4.421
788 5.325 5.324 5.319 5.080
1576 5.322 5.322 5.321 5260




